Acta Crystallographica Section B

## Structural

Science
ISSN 0108-7681

László Fábián* and Alajos Kálmán

Institute of Chemistry, Chemical Research Center, Hungarian Academy of Sciences, PO Box 17, H-1525 Budapest, Hungary

Correspondence e-mail: Ifabian@chemres.hu
(C) 2004 International Union of Crystallography Printed in Great Britain - all rights reserved

## Isostructurality in one and two dimensions: isostructurality of polymorphs

A set of polymorphic crystal structures was retrieved from the Cambridge Structural Database in order to estimate the frequency of isostructurality among polymorphs. Altogether, 50 structures, the polymorphs of 22 compounds, were investigated. It was found that one-, two- or three-dimensional isostructurality is exhibited by approximately half of the compounds analyzed. Among the isostructural polymorphs, the frequency of one-, two- and three-dimensional isostructurality is similar. From the examples, it appears that threedimensional isostructurality is connected to the gradual ordering of crystal structures, while one- and two-dimensional isostructurality can often be related to specific packing interactions. The possibility of many similar interactions seems to decrease the probability of the occurrence of isostructural polymorphs. Conformational polymorphs do not exhibit isostructurality.

## 1. Introduction

Isostructurality refers to the similarity of the spatial arrangements of the molecules of different compounds in their crystals (Fábián \& Kálmán, 1999). It is traditionally interpreted in three dimensions, i.e. isostructurality involves whole structures, which are infinite in three dimensions by means of three crystallographic translations. However, it is possible to extend the interpretation of the phenomenon to one- and twodimensional isostructurality. If two crystal structures contain similar infinite two-dimensional molecular arrangements (layers) then they are termed two-dimensionally isostructural. Accordingly, structures with similar rows of molecules are one-dimensionally isostructural. The crystallographic relevance of such an extended interpretation is justified by a report on the successful co-crystallization of one-dimensionally isostructural materials (Anthony et al., 2000). Note that this interpretation does not depend on unit-cell parameters and space-group symmetries, and is incompatible with the classical term isomorphism, which is often used synonymously with isostructurality.

While isostructurality implies similar crystal structures for different compounds, polymorphism is defined as the existence of two or more different crystal structures for the same compound. Thus, the two phenomena seem contradictory. Recently, we have reported on polymorph pairs that are composed of similar layers (Fábián et al., 1999; Kálmán et al., 2003). Since these dimorphs can be considered two-dimensionally isostructural, we decided to estimate the frequency of one- and two-dimensional isostructurality between polymorphs by using the Cambridge Structural Database (CSD; April 2003 issue; Allen, 2002). Additionally, some cases of

Table 1
Polymorphic structures retrieved from the CSD
References to the crystal structures are given in the text.

| Structure | CSD refcode | Isostructurality |
| :---: | :---: | :---: |
| 6-Hydroxy-4,4,5,7,8-pentamethyl-3,4-dihydrocoumarin |  |  |
| Polymorph 1 | MEZKEH02 | Three-dimensional: 1, 2, 3 |
| Polymorph 2 | MEZKEH04 |  |
| Polymorph 3 | MEZKEH12 |  |
| $7 b-(2,4-$ Dinitrophenyl)fluoradene |  |  |
| Polymorph 1 | RAKWIJ | Three-dimensional |
| Polymorph 2 | RAKWIJ03 |  |
| $m$-Tetrachlorodicyanobenzene hexamethylbenzene |  |  |
| Polymorph I | MOCCOW01 | Three-dimensional |
| Polymorph II | MOCCOW |  |
| 2,3,7,8-Tetrahydrobenzo[1,2-b:4,5-b'] bis[1,4]dithiin-5,10-dione |  |  |
| Polymorph I | GUKPEH01 | Three-dimensional |
| Polymorph II | GUKPEH |  |
| 4,6-Dimethoxy-3-methyl-2,3-dihydrotriazine-2-one |  |  |
| Low-temperature form | ZEXXOP01 | Three-dimensional |
| High-temperature form | ZEXXOP03 |  |
| 5-Bromobenzfurazan-1-oxide |  |  |
| High-temperature polymorph | BBZFRO01 | Three-dimensional |
| Low-temperature polymorph | BBZFRO02 |  |
| $p$-Tetrachlorodicyanobenzene hexamethylbenzene |  |  |
| Polymorph I | ADULEQ01 | One-dimensional: I, II |
| Polymorph II | ADULEQ02 | Two-dimensional: II, III, IV |
| Polymorph III | ADULEQ03 |  |
| Polymorph IV | ADULEQ04 |  |
| Glycine |  |  |
| $\alpha$ form | GLYCIN19 |  |
| $\beta$ form | GLYCIN | Two-dimensional, onedimensional |
| $\gamma$ form | GLYCIN16 |  |
| 5-Oxatricyclo[5.1.0.0 ${ }^{1,3}$ ] octane-4-one |  |  |
| Orthorhombic polymorph | FAFDAS01 | Two-dimensional |
| Monoclinic polymorph | FAFDAS02 |  |
| Acetonitrile |  |  |
| $\alpha$ form | QQQCIV05 | One-dimensional |
| $\beta$ form | QQQCIV04 |  |
| 4,6-Dimethoxy-3-methyl-1,3,5-triazine-2(3H)thione |  |  |
| Monoclinic polymorph | QOYNOH | One-dimensional |
| Orthorhombic polymorph | QOYNOH01 |  |
| Maleic hydrazide |  |  |
| MH1 triclinic polymorph | MALEHY11 | One-dimensional |
| MH2 monoclinic polymorph | MALEHY01 |  |
| MH3 monoclinic polymorph | MALEHY12 |  |
| 4,4'-Bipyridyl (S)-malic acid |  |  |
| Monoclinic polymorph | MOBZAE | None |
| Triclinic polymorph | MOBZAE01 |  |
| Benzoylmethyl phenyl sulfone |  |  |
| Orthorhombic polymorph | KADTEO01 | None |
| Monoclinic polymorph | KADTEO02 |  |
| $N, N^{\prime}$-dithiodiphthalimide |  |  |
| Monoclinic polymorph 1 | QOGNEF | None |
| Orthorhombic polymorph | QOGNEF01 |  |
| Monoclinic polymorph 2 | QOGNEF02 |  |

Table 1 (continued)

| Structure | CSD refcode | Isostructurality | Fig. |
| :---: | :---: | :---: | :---: |
| Ethylenediammonium 3,5-dinitrobenzoate |  |  |  |
| Triclinic polymorph | VUJXIH | None |  |
| Monoclinic polymorph | VUJXIH02 |  |  |
| Aplysistatin |  |  |  |
| Orthorhombic polymorph | APLYSU10 | None |  |
| Hexagonal polymorph | APLYSU11 |  |  |
| Ethyl $N$-(2-amino-6-benzyloxy-5-nitrosopyrimidin-4-yl)- $\beta$-alaninate |  |  |  |
| Polymorph I | OFEXAY01 | None |  |
| Polymorph II | OFEXAY |  |  |
| 4-Nitro-4'-methylbenzylideneaniline |  |  |  |
| Triclinic polymorph | NMBYAN | None |  |
| Monoclinic polymorph | NMBYAN01 |  |  |
| ( $\mu_{2}$-Oxo) bis[bis( $N, N$-diethyldithiocarbamato- $S, S^{\prime}$ ) oxomolybdenum] |  |  |  |
| Triclinic polymorph | XETCMO | None |  |
| Monoclinic polymorph | XETCMO03 |  |  |
| Phenol |  |  |  |
| Low-pressure polymorph | PHENOL03 | None | 16 |
| High-pressure polymorph | PHENOL11 |  |  |
| Hexatriaconta(phenylseleno)pentacontaselenadotriaconta mercury |  |  |  |
| Cubic polymorph | TUJFUZ01 | None |  |
| Trigonal polymorph | TUJFUZ02 |  |  |

three-dimensional isostructurality were also found during our analysis.

## 2. Method

To obtain reasonable estimates, a random set of polymorphic systems is necessary. Since there is no automated tool to check for one- or two-dimensional isostructurality, this set has to be kept small. [Gelbrich (2003) is developing a program for the automatic recognition of similar packing arrangements.] To obtain such a set, the CSD was searched for structures (a) that 11 were published in the 2001 or 2002 issues of Acta Crystallographica Section B and (b) for which the CSD entry contained a reference to polymorphism. If an entry contained three-dimensional coordinates then other forms of the respective compound were retrieved by a full search of the CSD. Coordinates of more than one form were found for 22 polymorphic systems. Only the best model was retained from redeterminations of a given structure. Each system was checked for one-, two- or three-dimensional isostructurality among the modifications by visual comparison of the struc-
tures.

## 3. Results

Altogether, 50 crystal structures (Table 1), the polymorphs of 22 compounds, were examined. Ten of the compounds crystallized without isostructurality between their polymorphs. These structures included conformational polymorphs, polymorphs that differ in the geometry of a common hydrogenbond pattern and modifications with identical molecular
geometry but with completely different intermolecular interactions.

Six examples of three-dimensional isostructurality were found. They are mainly pairs of disordered symmetric structures and an ordered pseudosymmetric structure. Similar reduction of symmetry was also observed for a fully ordered structure pair. Polymorphism is the existence of two or more


MEZKEH


RAKWIJ



MOCCOW


ADULEQ



GUKPEH

Figure 1
Chemical line drawings.


NMBYAN
VUJXIH


XETCMO
different arrangements of the molecules of the same compound in the solid state. While possible interpretations of 'the same compound' were discussed in recent reviews (Dunitz \& Bernstein, 1995; Dunitz, 1995; Threlfall, 1995), the meaning of 'different arrangements' attracted less attention. All threedimensionally isostructural forms are at the borderline of polymorphism, and their classification as polymorphs depends on an individual interpretation of the term 'different arrangements'. Nevertheless, these cases were retained in our data set, since the original authors always demonstrated an experimental proof of the thermodynamic and/or structural difference between the crystal forms.

The crystal forms of three compounds exhibited two-dimensional isostructurality. They exemplified polytypism (Schneer, 1955) and the different stacking modes of similar layers. One-dimensional isostructurality was observed for the polymorphs of five compounds. In two cases, both one- and twodimensional isostructurality were exhibited by the polymorphs of the same compound.

### 3.1. Compounds with isostructurality among their polymorphs

3.1.1. 6-Hydroxy-4,4,5,7,8-pentamethyl-3,4-dihydrocoumarin (MEZKEH). The lactone ring (Fig. 1) is disordered in the hightemperature crystal form (1 in Fig. 2) of 6-hydroxy-4,4,5,7,8-penta-methyl-3,4-dihydrocoumarin
(Budzianowski \& Katrusiak, 2002). Below 300 K , the ring inversion becomes gradually ordered (form 2), and the space group of the crystals changes to $P 2_{1} / c$ from $P 2_{1} / m$ (Table 2). At 225 K , abrupt inversion of the lactone ring (form 3) changes the translational symmetry (space group $P 2_{1} / n$ ).

Despite the changes in symmetry, the arrangements of the molecules remain similar in all three phases. Therefore, they can all be regarded as three-dimensionally isostructural. This example indicates that polymorphs related by an order-disorder

Table 2
Space-group symmetries, unit-cell parameters and calculated densities of the structures retrieved from the CSD.

Unit-cell axes and volumes are given in $\AA$, angles in ${ }^{\circ}$ and densities in $\mathrm{g} \mathrm{cm}^{-3}$. References to the crystal structures are given in the text.

| Refcode | Space group |  | $a$ | $b$ | c | $\alpha$ | $\beta$ | $\gamma$ | V | $D_{x}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| MEZKEH02 | $P 2_{1} / m$ | 2 | 9.753 | 6.933 | 9.572 | 90 | 94.39 | 90 | 645 | 1.206 |
| MEZKEH04 | $P 2_{1} / c$ | 4 | 9.768 | 6.933 | 19.130 | 90 | 94.39 | 90 | 1292 | 1.205 |
| MEZKEH12 | $P 2_{1} / n$ | 4 | 13.429 | 6.784 | 13.792 | 90 | 91.54 | 90 | 1256 | 1.239 |
| RAKWIJ | $P 2_{1} / c$ | 4 | 7.758 | 15.550 | 17.179 | 90 | 110.72 | 90 | 1938 | 1.393 |
| RAKWIJ03 | $P 2_{1} / c$ | 8 | 15.372 | 15.414 | 17.004 | 90 | 109.24 | 90 | 3804 | 1.419 |
| MOCCOW01 | $P 1$ | 1 | 7.5290 | 8.9503 | 9.0513 | 118.425 | 109.414 | 95.139 | 483 | 1.473 |
| MOCCOW | $P 1$ | 4 | 14.064 | 8.9554 | 18.117 | 118.407 | 90.832 | 76.460 | 1939 | 1.467 |
| GUKPEH01 | Ibam | 4 | 9.441 | 16.583 | 7.184 | 90 | 90 | 90 | 1125 | 1.703 |
| GUKPEH | Pccn | 4 | 9.401 | 16.515 | 7.053 | 90 | 90 | 90 | 1095 | 1.749 |
| ZEXXOP01 | $P 2_{1} / n$ | 8 | 13.480 | 14.172 | 8.433 | 90 | 92.07 | 90 | 1610 | 1.412 |
| ZEXXOP03 | Pnma | 4 | 8.481 | 6.780 | 14.284 | 90 | 90 | 90 | 821 | 1.384 |
| BBZFRO01 | $P 2_{1} / n$ | 4 | 7.954 | 7.297 | 12.574 | 90 | 90.124 | 90 | 730 | 1.957 |
| BBZFRO02 | $P 2_{1} / c$ | 8 | 14.5294 | 7.4121 | 14.5587 | 90 | 115.676 | 90 | 1413 | 2.021 |
| ADULEQ01 | $P 1$ | 1 | 7.513 | 8.615 | 9.029 | 114.24 | 113.30 | 91.92 | 476 | 1.494 |
| ADULEQ02 | $P \overline{1}$ | 1 | 7.5567 | 8.8956 | 8.9921 | 116.697 | 112.099 | 92.101 | 485 | 1.467 |
| ADULEQ03 | $C 2 / m$ | 2 | 9.754 | 15.410 | 7.5550 | 90 | 116.88 | 90 | 1013 | 1.404 |
| ADULEQ04 | $P 1$ | 2 | 7.4982 | 9.0371 | 15.4538 | 85.080 | 81.795 | 71.168 | 980 | 1.451 |
| GLYCIN19 | $P 2_{1} / n$ | 4 | 5.0993 | 11.9416 | 5.4608 | 90 | 111.784 | 90 | 309 | 1.615 |
| GLYCIN | $P 2_{1}$ | 2 | 5.077 | 6.268 | 5.38 | 90 | 113.2 | 90 | 157 | 1.584 |
| GLYCIN16 | $P 3_{2}$ | 3 | 6.975 | 6.975 | 5.473 | 90 | 90 | 120 | 231 | 1.621 |
| FAFDAS01 | $P 2_{1} 2_{1} 2_{1}$ | 4 | 9.9644 | 8.1854 | 7.4422 | 90 | 90 | 90 | 607 | 1.358 |
| FAFDAS02 | $P 2_{1} / \mathrm{c}$ | 4 | 9.9533 | 8.1831 | 7.8129 | 90 | 108.61 | 90 | 603 | 1.367 |
| QQQCIV05 | $P 2_{1} / c$ | 4 | 4.102 | 8.244 | 7.970 | 90 | 100.1 | 90 | 265 | 1.028 |
| QQQCIV04 | Cmc2 ${ }_{1}$ | 4 | 6.187 | 5.282 | 7.887 | 90 | 90 | 90 | 258 | 1.058 |
| QOYNOH | $P 2_{1} / c$ | 4 | 7.657 | 14.361 | 8.433 | 90 | 110.99 | 90 | 866 | 1.436 |
| QOYNOH01 | Pnma | 4 | 15.231 | 6.778 | 8.626 | 90 | 90 | 90 | 891 | 1.396 |
| MALEHY11 | $P 1$ | 2 | 5.8181 | 5.800 | 7.309 | 78.80 | 99.36 | 107.13 | 230 | 1.620 |
| MALEHY01 | $P 2_{1} / c$ | 4 | 6.891 | 9.674 | 6.946 | 90 | 100.07 | 90 | 456 | 1.631 |
| MALEHY12 | $P 2_{1} / n$ | 4 | 6.6070 | 6.9070 | 10.539 | 90 | 104.00 | 90 | 467 | 1.595 |
| MOBZAE | $C 2$ | 4 | 20.500 | 4.6656 | 14.201 | 90 | 99.68 | 90 | 1339 | 1.440 |
| MOBZAE01 | P1 | 1 | 5.1647 | 6.2749 | 10.2126 | 83.235 | 89.808 | 79.601 | 323 | 1.491 |
| KADTEO01 | $P 2_{1} 2_{1} 2_{1}$ | 4 | 4.8177 | 9.4100 | 26.719 | 90 | 90 | 90 | 1211 | 1.427 |
| KADTEO02 | $P 2_{1} / c$ | 4 | 9.2145 | 5.3594 | 25.665 | 90 | 98.448 | 90 | 1253 | 1.379 |
| QOGNEF | $P 2_{1} / c$ | 8 | 7.6037 | 33.9046 | 11.9404 | 90 | 93.058 | 90 | 3074 | 1.540 |
| QOGNEF01 | Pna2 ${ }_{1}$ | 4 | 7.1298 | 30.7247 | 6.8691 | 90 | 90 | 90 | 1505 | 1.573 |
| QOGNEF02 | $P 2_{1} / c$ | 8 | 13.5052 | 7.8740 | 29.2050 | 90 | 98.9640 | 90 | 3068 | 1.543 |
| VUJXIH | $P 1$ | 1 | 6.737 | 7.803 | 10.444 | 94.747 | 108.30 | 97.43 | 512 | 1.569 |
| VUJXIH02 | $P 2_{1} / c$ | 2 | 5.4549 | 10.6869 | 17.4420 | 90 | 95.704 | 90 | 1012 | 1.589 |
| APLYSU10 | $P 2_{1} 2_{1} 2_{1}$ | 4 | 9.982 | 7.182 | 20.586 | 90 | 90 | 90 | 1476 | 1.482 |
| APLYSU11 | $P 3_{1} 21$ | 6 | 7.59 | 7.59 | 43.99 | 90 | 90 | 120 | 2195 | 1.494 |
| OFEXAY01 | $P 2_{1} / \mathrm{c}$ | 4 | 5.2399 | 31.1630 | 9.792 | 90 | 100.200 | 90 | 1574 | 1.458 |
| OFEXAY | $P 2_{1}$ | 4 | 7.4830 | 16.6110 | 13.5378 | 90 | 91.5420 | 90 | 1682 | 1.364 |
| NMBYAN | P1 | 4 | 12.561 | 14.372 | 7.108 | 96.02 | 93.72 | 72.65 | 1217 | 1.311 |
| NMBYAN01 | $P \mathrm{c}$ | 2 | 7.305 | 11.495 | 7.240 | 90 | 109.71 | 90 | 572 | 1.393 |
| XETCMO | $P 1$ | 1 | 8.493 | 12.232 | 9.775 | 107.52 | 114.40 | 95.82 | 852 | 1.624 |
| XETCMO03 | C2/c | 4 | 10.886 | 17.769 | 18.06 | 90 | 104.01 | 90 | 3389 | 1.632 |
| PHENOL03 | $P 112_{1}$ | 6 | 6.050 | 8.925 | 14.594 | 90 | 90 | 90.36 | 788 | 1.190 |
| PHENOL11 | $P 2_{1}$ | 6 | 11.610 | 5.4416 | 12.217 | 90 | 101.47 | 90 | 756 | 1.239 |
| TUJFUZ01 | $P 23$ | 1 | 22.245 | 22.245 | 22.245 | 90 | 90 | 90 | 11008 | 1.982 |
| TUJFUZ02 | $P 3_{2} 21$ | 3 | 22.753 | 22.753 | 22.753 | 90 | 90 | 120 | 23771 | 2.753 |

Although both forms appear ordered, some diffuse scattering was recorded near half-integral $h$ indices for form 1 . The background scattering was much reduced and Bragg peaks appeared at the originally half-integral $h$ values for form 2. This behavior suggests an order (form 2)-disorder (form 1) transition.
3.1.3. $m$-Tetrachlorodicyanobenzene hexamethylbenzene (MOCCOW). Crystals of the complex of $m$-tetrachlorodicyanobenzene ( $m$-TCB) and hexamethylbenzene (HMB) were obtained in two distinct forms (Britton, 2002). The two forms both crystallize with space group $P \overline{1}$, but have $Z=1$ (form I) and $Z=4$ (form II), respectively (Table 2). In both forms, the two kinds of molecules form alternating planar layers (Fig. 4). In form I, $m$-TCB molecules are located on inversion centers and are disordered with two orientations of the cyano groups. In form II, these molecules are partially ordered; the asymmetric unit contains one disordered molecule located around a center of symmetry (degree of disorder $0.5 / 0.5$ ) and another, partially ordered, molecule in a general position ( $0.85 / 0.15$ occupancies). The packing arrangements of the molecules in the two forms are identical; they differ only in the degree of disorder. The similarity is so high that the coordinates of form I can be refined with the data measured for form II after an appropriate index transformation and the omission of the transformed reflections with non-integral indices (three-fourths of the data).
3.1.4. 2,3,7,8-Tetrahydrobenzo[1,2-b:4,5$b^{\prime}$ ]bis[1,4]dithiin-5,10-dione (GUKPEH). A high(I) and a low-temperature (II) form of 2,3,7,8-tetrahydrobenzo[1,2-b:4,5-b']bis[1,4]dithiin-5,10-dione (Fig. 1) were described by Matsumoto \& Mizuguchi (2001). The two forms have almost identical unit-cell parameters but form (I) crystallizes in Ibam and form (II) in Pccn (Table 2). The reversible transition between the two forms was monitored by differential scanning calorimetry (DSC) measurements and by the appearance and disappearance of the reflections that are systematically absent for the body-centered lattice.

In form I, the molecules occupy special positions with $2 / m$ symmetry, and the non-planar ethylene fragments between the S atoms are disordered. In form II, the site symmetry is reduced to 2, and the
transition can exhibit a high degree of isostructurality.
3.1.2. 7b-(2,4-Dinitrophenyl)fluoradene (RAKWIJ). Both crystalline modifications of $7 b$-(2,4-dinitrophenyl)fluoradene crystallize with space group $P 2_{1} / c$ (Xia et al., 2001). Only one of their unit-cell parameters is different; the $a$ axis is twice as long in form 2 as in form 1 (Table 2). The two structures are isostructural in three dimensions. A pseudo-translation in form 2 becomes a crystallographic translation in form 1 (Fig. $3)$.
molecules are ordered (Fig. 5). Since no other structural change occurs on phase transition, the two forms are threedimensionally isostructural.
3.1.5. 4,6-Dimethoxy-3-methyldihydrotriazine-2-one (ZEXXOP). A reversible single-crystal-to-single-crystal transformation of 4,6-dimethoxy-3-methyldihydrotriazine-2-one was identified in DSC measurements (Kaftory et al., 2001). The asymmetric unit of the low-temperature form (space group $P 2_{1} / c$ ) contains two molecules, which are related by a pseudo-
inversion center (Fig. 6). The high-temperature form crystallizes with space group Pnma. In this form, the molecules are located on a crystallographic mirror plane, and the pseudoinversion is replaced by a crystallographic center of symmetry. Since the phase transition is accompanied by only a small molecular rearrangement, the two modifications remain isostructural in three dimensions.
3.1.6. 5-Bromobenzfurazan-1-oxide (BBZFRO). The highand low-temperature forms of 5-bromobenzfurazan-1-oxide can be interconverted without any breaking of the single crystal (Pink \& Britton, 2002). The two forms are composed of identical layers and differ by a ca $0.7 \AA$ relative shift between adjacent layers and by the degree of disorder. Namely, both forms contain 6-bromobenzfurazan-1-oxide as a minor component, but on lowering the temperature, the isomerization equilibrium is shifted toward 5-bromobenzfurazan-1oxide (see Pink \& Britton, 2002). The small difference in the relative position is hardly noticeable visually (Fig. 7), so the two forms are considered three-dimensionally isostructural.


Figure 2
Crystal structures of the three polymorphs of 6-hydroxy-4,4,5,7,8-pentamethyl-3,4-dihydrocoumarin (Budzianowski \& Katrusiak, 2002): (1) MEZKEH02, (2) MEZKEH04 and (3) MEZKEH12.

(1)

(2)

Figure 3
Parts of the crystal structures of the $7 b$-(2,4-dinitrophenyl)fluoradene dimorphs (Xia et al., 2001): (1) RAKWIJ and (2) RAKWIJ03. Only half of the molecules in the unit cells are shown for clarity.


(1)


Figure 4
Packing arrangements of the crystals of the complex of $m$-tetrachlorodicyanobenzene and hexamethylbenzene (Britton, 2002): (I) MOCCOW01 and (II) MOCCOW. H atoms have been omitted for clarity.
3.1.7. $p$-Tetrachlorodicyanobenzene hexamethylbenzene (ADULEQ). Four crystal forms of the $1: 1$ complex crystal of p-tetrachlorodicyanobenzene ( $p$-TCB) and hexamethylbenzene (HMB) were reported by Britton (2002). Polymorph III $(C 2 / m, Z=2)$ is assembled from alternating layers of $p$-TCB and HMB molecules (Fig. 8). Polymorph II ( $P \overline{1}, Z=1$ ) is assembled from slightly distorted variants of the same layers, so it is two-dimensionally isostructural with form III. These two modifications differ in the stacking of the layers. In form III, the molecules of subsequent layers exactly overlap, while in form II, an offset parallel to the $\mathrm{C}-\mathrm{N}$ bonds is present between the layers.

In polymorph IV $(P \overline{1}, Z=2)$, the $p$-TCB layers have different topology from those in polymorphs II and III. (See the orientations of the cyano groups in Fig. 8.) Because of the $D 6_{h}$ symmetry of the HMB molecules, the topology of HMB layers remains the same. Despite some geometrical distortion,

(I)

(II)

Figure 5
Crystal structures of the low- and high-temperature forms of 2,3,7,8-tetrahydrobenzo[1,2-b:4,5-b']bis[1,4]dithiin-5,10-dione (Matsumoto \& Mizuguchi, 2001): (I) GUKPEH01 and (II) GUKPEH. H atoms have been omitted for clarity.

HMB layers of II, III and IV are two-dimensionally isostructural.

Each layer of form $\mathrm{I}(P \overline{1}, Z=1)$ is built from both kinds of molecules, in contrast to the separate HMB and $p-\mathrm{TCB}$ layers of the other forms. Nevertheless, the same offset molecular stacks are present in polymorphs I and II (Fig. 8, perpendicular to the plane of the paper). The relative offset between adjacent stacks along the stacking direction is different in the two forms, and thus they are isostructural in one dimension.
3.1.8. Glycine (GLYCIN). The coordinates for three forms of glycine are archived in the CSD ( $\alpha$ : Langan et al., 2002; $\beta$ : Iitaka, 1960; $\gamma$ : Kvick et al., 1980). The $\alpha$ and $\beta$ forms are built from similar layers (Fig. 9, bottom layers of $\alpha$ and $\beta$ ). The layers are distinguished only by a minor conformational difference between the molecules and so are two-dimensionally isostructural. Subsequent layers are related by inversion centers in the $\alpha$ form (space group $P 2_{1} / n$ ) and by screw axes in the $\beta$ form (space group $P 2_{1}$ ). In the $\gamma$ form (space group $P 3_{2}$ ), no such layers are present, but hydrogen-bonded chains of glycine molecules are formed with a geometry similar to that


Figure 6
Crystal structures of the low- (ZEXXOP01) and high-temperature (ZEXXOP03) forms of 4,6-dimethoxy-3-methyldihydrotriazine-2-one (Kaftory et al., 2001).
in the $\alpha$ and $\beta$ polymorphs (Fig. 9). Hence the $\gamma$ form is onedimensionally isostructural with the $\alpha$ and $\beta$ forms.
3.1.9. 5-Oxatricyclo[5.1.0.0 ${ }^{1,3}$ ]octane-4-one (FAFDAS). Two polytypes of 5-oxatricyclo[5.1.0.0 ${ }^{1,3}$ ]octane-4-one (Fig. 1) were found in the same composite crystal (Yufit et al., 2002). They have similar unit-cell parameters (Table 2) but crystallize with different space groups: $P 2_{1} 2_{1} 2_{1}$ and $P 2_{1} / c$, respectively. The two forms are composed of identical layers (two-dimensional isostructurality). Neighboring layers are related to each other either by $c$-glide planes (monoclinic form) or by twofold screw axes (orthorhombic form; Fig. 10). While the monoclinic form contains both enantiomers, the orthorhombic structure comprises only one of them, i.e. it is the product of a spontaneous resolution. Consequently, the molecular constituents of the two forms are not strictly identical, and their classification as polymorphs is questionable.
3.1.10. Acetonitrile (QQQCIV). Two forms of acetonitrile were described by Enjalbert \& Galy (2002). Both forms are assembled from layers (Fig. 11). In the low-temperature $\beta$ form (space group $\mathrm{Cmc}_{1}$ ), the molecules in a layer are related


Figure 7
Crystal structures of the high- (BBZFRO01) and low-temperature (BBZFRO02) forms of 5-bromobenzfurazan-1-oxide (Pink \& Britton, 2002).
to each other by screw axes and translation. The symmetry of the layers in the $\alpha$ form $\left(P 2_{1} / c\right)$ is governed by screw axes and inversion centers. The one-dimensional isostructurality of the two forms stems from the stacking of the layers (Fig. 11, perpendicular to the plane of the paper). The chains of screwrelated molecules within a layer are similar in the two forms, but the geometry of the $\mathrm{C}-\mathrm{H} \cdots \mathrm{N}$ interactions is different. The $\mathrm{C}-\mathrm{C}(\mathrm{H}) \cdots \mathrm{N}-\mathrm{C}$ dihedral angle is $74^{\circ}$ in the $\alpha$ form and $58^{\circ}$ in the $\beta$ form.


Figure 8
Stereoviews of the crystal structures of p-tetrachlorodicyanobenzene hexamethylbenzene polymorphs (Britton, 2002): (I) ADULEQ01, (II) ADULEQ02, (III) ADULEQ03 and (IV) ADULEQ04.
3.1.11. 4,6-Dimethoxy-3-methyl-1,3,5-triazine-2(3H)thione (QOYNOH). 4,6-Dimethoxy-3-methyl-1,3,5-triazine$2(3 H)$-thione (Fig. 1) crystallizes with monoclinic $\left(P 2_{1} / c\right)$ and orthorhombic (Pnma) symmetry (Greenberg et al., 2001). The two forms comprise similar chains of molecules (Fig. 12) with short $\mathrm{O}-\mathrm{CH}_{3} \cdots \mathrm{~N}$ contacts. These contacts are formed between translation-related molecules along the $c$ axis in both structures. Consequently, these dimorphs exhibit one-dimensional isostructurality.
3.1.12. Maleic hydrazide (MALEHY). Maleic hydrazide is known to exist in three crystalline forms (MH1, P $\overline{1}$ : Cradwick, 1975; MH2, $P 2_{1} / c$ : Katrusiak, 1993; MH3, $P 2_{1} / n$ : Katrusiak, 2001). The molecules form hydrogen-bonded ribbons in all three forms, with similar relative arrangements of the molecules, rendering the structures one-dimensional isostructural (Fig. 13). No hydrogen bonds exist between these ribbons in the three polymorphs, only weak van der Waals interactions.

### 3.2. Polymorphs without isostructurality

3.2.1. 4,4'-Bipyridyl (S)-malic acid (MOBZAE). From a solution in methanol, two forms of the 4,4'-bipyridyl ( $S$ )-malic acid complex crystallized concomitantly (Farrell, Ferguson et al., 2002). Both the malic acid and the bipyridyl molecules


Figure 9
Stereoviews of the crystal structures of glycine polymorphs: $(\alpha)$ GLYCIN19 (Langan et al., 2002), ( $\beta$ ) GLYCIN (Iitaka, 1960) and ( $\gamma$ ) GLYCIN16 (Kvick et al., 1980).
assume similar conformations in the monoclinic (C2) and triclinic ( $P 1$ ) forms. The molecules form infinite chains, with $\mathrm{COOH} \cdots \mathrm{N}$ hydrogen bonds in both forms. These chains differ in the orientation of the malic acid molecules relative to the chains: either $\mathrm{HOOC}-\mathrm{CH}(\mathrm{OH})-\mathrm{CH}_{2}-\mathrm{COOH}$ or $\mathrm{HOOC}-$ $\mathrm{CH}_{2}-\mathrm{CH}(\mathrm{OH})-\mathrm{COOH}$ (given the orientation of the chains in Fig. 14). This difference is clearly related to the presence of

(Orthorhombic form)

(Monoclinic form)

Figure 10
Crystal structures of 5-oxatricyclo[5.1.0.0 $0^{1,3}$ ]octane-4-one (Yufit et al., 2002): orthorhombic (FAFDAS01) and monoclinic (FAFDAS02) forms. Molecules of an identically oriented layer are shown in color, while those in a symmetry-related layer are shown in gray.
another hydrogen bond: $\mathrm{OH} \cdots \mathrm{O}=\mathrm{C}$ in the monoclinic form and $\mathrm{OH} \cdots \mathrm{OH}$ in the triclinic polymorph.

The $4,4^{\prime}$-bipyridyl moieties in the two chains are superposable, but the different orientations of the malic acid molecules prevent the whole chains from being superposable. Consequently, these polymorphs are not considered isostructural, but they represent a close approach to one-dimensional isostructurality.
3.2.2. Benzoylmethyl phenyl sulfone (KADTEO). The monoclinic ( $P 2_{1} / c$ ) and orthorhombic $\left(P 2_{1} 2_{1} 2_{1}\right)$ forms of benzoylmethyl phenyl sulfone are conformational polymorphs (Wolf, 2001). The synclinal $\mathrm{C}_{\mathrm{Ph}}-\mathrm{S}-\mathrm{CH}_{2}-\mathrm{C}(=\mathrm{O})$ torsion angle $\left[-43.2(1)^{\circ}\right]$ assumed in the monoclinic form rotates into the antiperiplanar range $\left[-154.0(2)^{\circ}\right]$ in the orthorhombic form. This turn is accompanied by a rotation around the $\mathrm{CH}_{2}-\mathrm{C}(=\mathrm{O})$ bond $\left[\psi=-90.2(2) \rightarrow 101.3(2)^{\circ}\right]$.

( $\alpha$ )



(3)

Figure 11
Crystal structures of acetonitrile polymorphs (Enjalbert \& Galy, 2002):
$(\alpha)$ QQQCIV05 and $(\beta)$ QQQCIV04.

Both conformers associate via $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}=\mathrm{S}$ interactions (Fig. 15). The resulting molecular ribbons are packed along the shortest unit-cell axes by translation (Table 2). In the orthorhombic form, the methylene C atoms, which form the common chains, donate their other H atoms to the $\mathrm{O}=\mathrm{S}$ groups of screw-related molecules. In addition, weak phenyl $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interactions are also present. These additional interactions seem to account for the different packing symmetries. Although the overall layouts of the unit cells exhibit some degree of similarity, these polymorphs lack isostructurality. Their structures demonstrate that 'packing similarity' with conformational dissimilarity is insufficient for isostructurality.

(Monoclinic form)


Figure 12
Crystal structures of the monoclinic (QOYNOH) and orthorhombic (QOYNOH01) forms of 4,6-dimethoxy-3-methyl-1,3,5-triazine-2(3H)thione (Greenberg et al., 2001). Molecules in a lower layer are drawn in gray. The central row in the figure of the monoclinic form and the bottom row in the figure of the orthorhombic form are identical.

Conformational polymorphism means that the molecules assume markedly different shapes in the polymorphs. The selfassembly of molecules of different shapes is highly unlikely to yield nearly identical spatial arrangements.
3.2.3. $N, N^{\prime}$-dithiodiphthalimide (QOGNEF). Polymorphs and pseudo-polymorphs of $N, N^{\prime}$-dithiodiphthalimide were studied by Farrell, Glidewell et al. (2002). In addition to an already known monoclinic polymorph (Skakle et al., 2001), Farrell, Glidewell et al. (2002) described two solvent-free crystal forms. The two monoclinic forms crystallize with space group $P 2_{1} / c$ and $Z^{\prime}=2$, while the orthorhombic form has space group $P n a 2_{1}$ and $Z^{\prime}=1$. The molecules assume similar

(MH1)

(MH2)


Figure 13
Crystal structures of the maleic hydrazide polymorphs (MALEHY11, 01, 12; Cradwick, 1975; Katrusiak, 1993, 2001).
conformations in all three forms. The packing arrangements, however, are completely different. The packing differences emerge from different patterns of $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds and $\pi-\pi$ stacking interactions.
3.2.4. Ethylenediammonium 3,5-dinitrobenzoate (VUJXIH). Crystals of the $2: 1$ salt of 3,5 -dinitrobenzoic acid and 1,2-diaminoethane were obtained in monoclinic ( $P 2_{1} / c$; Burchell et al., 2001) and triclinic ( $P \overline{1}$; Nethaji et al., 1992) forms. Even though both kinds of ions exhibit similar conformations in these forms, their hydrogen-bond interactions are completely different. This variety is facilitated by the high number of available donor and acceptor functions on the ions.
3.2.5. Aplysistatin (APLYSU). Aplysistatin is a sesquiterpene with a skeleton consisting of three fused rings (Fig. 1). The molecules assume the same conformation both in the orthorhombic $\left(P 2_{1} 2_{1} 2_{1}\right.$; von Dreele \& Kao, 1980) and hexagonal ( $P 3_{1} 21$; Marsh, 2002) crystal forms. Nevertheless, no common motif could be identified in the two polymorphs.
3.2.6. Ethyl $N$-(2-amino-6-benzyloxy-5-nitrosopyrimidin-4$\mathrm{yl})$ - $\beta$-alaninate (OFEXAY). Crystal structures of ethyl $N$-(2-amino-6-benzyloxy-5-nitrosopyrimidin-4-yl)- $\beta$-alaninate were investigated by Quesada et al. (2002). They identified two polymorphs. Polymorph I crystallizes with space group $P 2_{1} / c$ and $Z^{\prime}=1$, while polymorph II has space group $P 2_{1}$ and $Z^{\prime}=2$. The two molecules in the asymmetric unit of form II and the single molecule in form I exhibit three different conformations. The symmetry-independent molecules in polymorph II form similar intra- and intermolecular hydrogen bonds. The hydrogen-bonding interactions in form I are different, and this leads to a different conformation and a different packing arrangement of the molecules.
3.2.7. 4-Nitro-4'-methylbenzylideneaniline (NMBYAN). 4-Nitro-4'-methylbenzylideneaniline (Fig. 1) crystallizes in a monoclinic ( $P c$; Cole et al., 2001) or triclinic ( $P \overline{1}$; Filipenko et al., 1976) form. In the monoclinic form, the molecules are planar. In the two symmetry-independent molecules of the

(Monoclinic form)


Figure 14
Chains of hydrogen-bonded molecules in the monoclinic (MOBZAE) and triclinic (MOBZAE01) forms of 4,4'-bipyridyl ( $S$ )-malic acid (Farrell, Ferguson et al., 2002). One H atom is disordered between the two ions in each forms. Both disordered positions are shown.
triclinic form, the interplanar angles between the two phenyl rings of the molecules are 32 and $53^{\circ}$, respectively. Therefore, these forms are conformational polymorphs and do not exhibit isostructurality.
3.2.8. ( $\mu_{2}$-Oxo) bis[bis( $N, N$-diethyldithiocarbamato- $S^{\prime} \boldsymbol{S}^{\prime}$ )oxomolybdenum] (XETCMO). Two polymorphs of the binuclear complex ( $\mu_{2}$-oxo)bis[bis( $N, N$-diethyldithiocarbamato$S, S^{\prime}$ )oxomolybdenum] (Fig. 1) were found: a triclinic (Garner et al., 1979) and a monoclinic (Marsh \& Spek, 2001) form. These forms are conformational polymorphs, since their molecules differ in a rotation around the linear $\mathrm{Mo}-\mathrm{O}-\mathrm{Mo}$ bridge. Hence, these polymorphs do not exhibit isostructurality.
3.2.9. Phenol (PHENOL). Both the ambient-pressure and the high-pressure forms of phenol crystallize with space group $P 2_{1}$ and $Z=6$ (Zavodnik et al., 1987; Allan et al., 2002). The molecules form infinite chains of $\mathrm{OH} \cdots \mathrm{OH}$ hydrogen bonds in both forms (Fig. 16). These chains are pseudo-trigonal in the ambient-pressure form, while the hydrogen bonds are formed between twofold screw-axis-related molecules in the highpressure form. Both crystals are built up from the same supramolecular entity: the infinite chain of hydrogen-bonded molecules. The geometries of these chains differ despite the similar conformation of the constituent molecules. The two modifications of phenol differ in the conformation of the same


Figure 15
Chains of $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}=$ S-linked molecules in the orthorhombic (KADTEO01) and monoclinic (KADTEO02) dimorphs of benzoylmethyl phenyl sulfone (Wolf, 2001).
supermolecule, so they are supramolecular analogs of conformational polymorphs.
3.2.10. $\left[\mathrm{Hg}_{32} \mathrm{Se}_{14}(\mathbf{S e P h})_{36}\right]$ (TUJFUZ). Two crystal forms of the $\left[\mathrm{Hg}_{32} \mathrm{Se}_{14}(\mathrm{SePh})_{36}\right]$ nanocluster were prepared by Behrens et al. (1996). The two forms crystallize with cubic (P23) and trigonal $\left(P 3_{2} 21\right.$; Marsh, 2002) symmetry. The clusters possess $T$ symmetry in both forms, and are consequently very similar. The trigonal structure contains channels of ca $7 \AA$ diameter, which presumably contain disordered solvent molecules. Therefore, these structures can be regarded as pseudo-polymorphs rather than polymorphs, and the different composition may account for the lack of isostructurality.

## 4. Conclusion

This analysis has demonstrated that the occurrence of common packing patterns among polymorphs is frequent. Approximately half of the compounds investigated were shown to exhibit one-, two- or three-dimensional isostructurality between their crystal forms.

Three-dimensional isostructurality of polymorphs is always related to the gradual ordering of the structure. The relationship between three-dimensional isostructural polymorphs may be a symmetry-pseudosymmetry and/or an orderdisorder transition. Some of the papers describing these structures report a single-crystal-to-single-crystal transition between three-dimensionally isostructural crystal forms.

Two-dimensional isostructurality is exhibited by polymorphs that differ either by the symmetry operation or by the relative offset between subsequent layers. In the former case, the relationship of the polymorphs is reflected by their space groups having common two-dimensional sublattices. Isostructurality in one dimension is connected to stacking interactions or the formation of hydrogen-bonded chains.

It is not clear from the present examples whether one- and two-dimensional isostructurality of polymorphs can be related


Figure 16
Crystal structures of the ambient- (PHENOL03; Zavodnik et al., 1987) and high-pressure (PHENOL11; Allan et al., 2002) forms of phenol.
to interaction energies or to crystal growth. While the hydrogen bonds that form tapes in all three forms of maleic hydrazide are clearly the strongest interactions in the structures, the ranking of interaction energies in glycine polymorphs is impossible without accurate calculations. Furthermore, even the identity of the interaction does not ensure isostructurality. The flexibility of a single hydrogen bond between phenol molecules, for example, allows a substantial difference between the shape of the $\mathrm{OH} \cdots \mathrm{OH}$ chains in the high-pressure and in the ambient-pressure forms. Because of this flexibility, it is sometimes hard to decide if isostructurality is present or not [see e.g. acetonitrile or 4, $4^{\prime}$ bipyridyl ( $S$ )-malic acid].

Conformational polymorphism apparently excludes isostructurality. The similarity of association patterns, however, may approach it, as demonstrated by the dimorphs of benzoylmethyl phenyl sulfone. Beyond conformational dissimilarity, the abundance of available interactions (and interaction sites) with similar strengths seems to hinder the appearance of isostructural polymorphs.

This work was supported by the Hungarian Research Fund, Grant No. OTKA T034985.

## References

Allan, D. R., Clark, S. J., Dawson, A., McGregor, P. A. \& Parsons, S. (2002). Acta Cryst. B58, 1018-1024.

Allen, F. H. (2002). Acta Cryst. B58, 380-388.
Anthony, A., Jaskólski, M. \& Nangia, A. (2000). Acta Cryst. B56, 512525.

Behrens, S., Bettenhausen, M., Deveson, A. C., Eichhöfer, A., Fenske, D., Lohde, A. \& Woggon, U. (1996). Angew. Chem. Int. Ed. Engl. 35, 2215-2218.
Britton, D. (2002). Acta Cryst. B58, 553-563.
Budzianowski, A. \& Katrusiak, A. (2002). Acta Cryst. B58, 125-133.
Burchell, C. J., Glidewell, C., Lough, A. J. \& Ferguson, G. (2001). Acta Cryst. B57, 201-212.
Cole, J. M., Howard, J. A. K. \& McIntyre, G. J. (2001). Acta Cryst. B57, 410-414.
Cradwick, P. D. (1975). Nature (London), 258, 774.
Dreele, R. B. von \& Kao, J. P. Y. (1980). Acta Cryst. B36, 2695-2698.
Dunitz, J. D. (1995). Acta Cryst. B51, 619-631.

Dunitz, J. D. \& Bernstein, J. (1995). Acc. Chem. Res. 28, 193-200.
Enjalbert, R. \& Galy, J. (2002). Acta Cryst. B58, 1005-1010.
Fábián, L., Argay, Gy. \& Kálmán, A. (1999). Acta Cryst. B55, 788-792.
Fábián, L. \& Kálmán, A. (1999). Acta Cryst. B55, 1099-1108.
Farrell, D. M. M., Ferguson, G., Lough, A. J. \& Glidewell, C. (2002). Acta Cryst. B58, 530-544.
Farrell, D. M. M., Glidewell, C., Low, J. N., Skakle, J. M. S. \& Zakaria, C. M. (2002). Acta Cryst. B58, 289-299.

Filipenko, O. S., Ponomarev, V. I. \& Atovmyan, L. O. (1976). Dokl. Akad. Nauk SSSR, 229, 1113. (In Russian.)
Garner, C. D., Howlader, N. C., Mabbs, F. E., McPhail, A. T. \& Onan, K. D. (1979). J. Chem. Soc. Dalton Trans. pp. 962-969.

Gelbrich, T. (2003). 21st European Crystallographic Meeting Abstracts, poster f3.m7.p2, p. 176.
Greenberg, M., Shteiman, V. \& Kaftory, M. (2001). Acta Cryst. B57, 428-434.
Iitaka, Y. (1960). Acta Cryst. 13, 35-45.
Kaftory, M., Botoshansky, M., Kapon, M. \& Shteiman, V. (2001). Acta Cryst. B57, 791-799.
Kálmán, A., Fábián, L., Argay, Gy., Bernáth, G. \& Gyarmati, Zs. (2003). J. Am. Chem. Soc. 125, 34-35.

Katrusiak, A. (1993). Acta Cryst. C49, 36-39.
Katrusiak, A. (2001). Acta Cryst. B57, 697-704.
Kvick, A., Canning, W. M., Koetzle, T. F. \& Williams, G. J. B. (1980). Acta Cryst. B36, 115-120.
Langan, P., Mason, S. A., Myles, D. \& Schoenborn, B. P. (2002). Acta Cryst. B58, 728-733.
Marsh, R. E. (2002). Acta Cryst. B58, 893-899.
Marsh, R. E. \& Spek, A. L. (2001). Acta Cryst. B57, 800-805.
Matsumoto, S. \& Mizuguchi, J. (2001). Acta Cryst. B57, 82-87.
Nethaji, M., Pattabhi, V., Chhabra, N. \& Poonia, N. S. (1992). Acta Cryst. C48, 2207-2209.
Pink, M. \& Britton, D. (2002). Acta Cryst. B58, 116-124.
Quesada, A., Marchal, A., Melguizo, M., Nogueras, M., Sánchez, A., Low, J. N., Cannon, D., Farrell, D. M. M. \& Glidewell, C. (2002). Acta Cryst. B58, 300-315.
Schneer, C. J. (1955). Acta Cryst. 8, 279-285.
Skakle, J. M. S., Wardell, J. L., Low, J. N. \& Glidewell, C. (2001). Acta Cryst. C57, 742-746.
Threlfall, T. L. (1995). Analyst, 120, 2435-2460.
Wolf, W. M. (2001). Acta Cryst. B57, 806-814.
Xia, A., Selegue, J. P., Carrillo, A., Patrick, B. O., Parkin, S. \& Brock, C. P. (2001). Acta Cryst. B57, 507-516.

Yufit, D. S., Kozhushkov, S. I., Howard, J. A. K. \& de Meijere, A. (2002). Acta Cryst. B58, 673-676.

Zavodnik, V. E., Bel'skii, V. K. \& Zorkii, P. M. (1987). Zh. Strukt. Khim. 28, 175-177.

